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Executive Summary 

 
WHY THIS WORK MATTERS 
 
Next to conversion of forest to other land uses, the loss of older forest age classes is a major threat to 
forest biodiversity worldwide. Late-successional and old-growth forests (LSOG) have a high density of 
large trees, large snags, and large downed logs, all of which are important to many species. The loss of 
these structural elements, as well as breaking the ecological continuity of LSOG stands over time, puts 
many forest species at risk. However, humans need wood for everything from paper and packaging to 
dimensional lumber for construction. Managing forests for such wood products results in a much 
younger forest across the landscape. Our challenge, then, is to manage for both wood production and 
LSOG forest. LSOG forest also has social value, irrespective of biodiversity benefits, and the Biden 
Administration made protection of mature and old-growth forest a national priority. To manage for 
LSOG forest, first we need a good sense of how much exists and where it exists. Then we can better 
manage the larger forest landscape for society’s varied forest values. This study uses LiDAR (light 
detection and ranging) data to quantify and map LSOG forest in the 4.2-million hectares (10.3 million 
acres) of unorganized territory in Maine.  

 
METHODS 
 
We used publicly available airborne LiDAR data, flown 
mostly between 2015 and 2018 in the unorganized 
townships of Maine (“study area”), to generate a 
canopy height model at 1m2 resolution for the entire 
area. In a commercial forest, LSOG stands “light up” 
because they are significantly taller than the 
surrounding managed forest (see Fig. A). Using sites 
of known forest successional stage, including true 
old-growth, we built a computer model based on eight 
canopy metrics that classified all 4.2-million hectares 
of the study area into one of four categories: 
 
    (1) Not LSOG (not late-successional or old-growth), 
    (2) Transitioning Late-Successional 
    (3) Late-successional, and 
    (4) “Old-growth-like” (Fig. B).  
 
Although our classification was primarily structural 
(sizes of trees, amount of downed wood) and 
compositional (shade tolerant species), Transitioning 
LS forest typically had dominant trees 100-150 years 
old and LS forest had dominant trees 150-200 years 

old. Old-growth reference sites had overstory trees 200-400 years old. Note that our method was not 
designed to find stunted, high-elevation forest or old wetland forest. It was designed to find LSOG forest 
in the 85% of the landscape that would be accessible to logging, and where LSOG forest is most at risk 
in the near term. We plan to build a new model that maps just old wetland forest using LiDAR. 
 
VALIDATION 
 
We used two methods to validate the accuracy of the classification. First, the computer model (called 
random forest) does an “internal” validation using a subset of the reference-site data not used to build 
the model. This validation method indicated that the model correctly classified a hectare as Not LSOG or 
one of the three LSOG classes 94% of the time. The second validation method involved field 
verification—visiting novel hectares in the field to determine whether the computer model correctly 
classified the hectare. This more rigorous and expensive approach to validation showed virtually the 

 
     

Figure A. The blue-magenta canopy height “signature” 
often indicates a late-successional stand in the unorganized 
townships of Maine. Grid=1 ha units. 



 
 

same result—94% accuracy. We also challenged the model 
to distinguish more finely among the three LSOG classes. It 
performed well here too but struggled to distinguish 
between LS and true old-growth. Still, it correctly classified 
the older age classes most of the time, and thus provides an 
excellent map for directing landowners and conservationists 
to potentially exceptional LSOG stands. Ground verification 
is always essential. 
 
HOW MUCH LSOG SUCCESSION FOREST REMAINS? 
 
We estimate that about 16% of the unorganized territories of 
Maine was in Transitioning LS (green, Fig. B) and about 3% 
was in LS (blue, Fig. B). Only about 0.9% was classified as 
“old-growth-like.” Fig. C summarizes percentages for 
different landscape units/ownerships. LSOG stands have a 
significantly higher density of late-successional forest 
characteristics than the average commercial forest stand.  
In our view, all LS stands should be conserved (or managed 
lightly) because of their increasing rarity. The model was not 
good at distinguishing between LS and true old-growth. We 
plan to build a more refined model to distinguish between just these two classes using a larger suite of 
canopy metrics.  
 
HOW BIG (or SMALL) ARE LSOG STANDS? 
 
Because the computer algorithm classified each hectare independently, we were able to examine the 
size class distribution of the three LSOG classes. For example, in the 4.2M hectare study area, there 
were 21,783 distinct parcels of LSOG forest in the 1-5 hectare area class, totaling some 58,621 hectares. 
At the other end of the area distribution, there were 386 stands ≥ 250 ha, totaling 432,000 hectares. 
While it is tempting to focus only on the larger stands for conservation prioritization, that would be a 
mistake. Some of the most vulnerable species to forest age (many mosses and lichens) can persist in 
small patches of forest for decades. If retained, these many small patches could function as source 
populations for the surrounding forest as it regrows. At the same time, larger stands allow for species 
and functions that require larger areas. The important point is that both large stands and the thousands 
of widely distributed small patches contribute to ensuring healthy populations of LSOG-related species 
in Maine’s unorganized townships. 
 

  

 
 

Figure B. An example of the computer model classification 
of each hectare in the landscape. Maine Audubon’s 
Borestone Sanctuary southeast of Greenville is well-known 
to be late-successional forest. White=Not LSOG; 
Green=Transitioning LS; Blue=LS; Dark Blue=”old-growth-
like.”  Grid=1 km2 

Borestone 

Appalachian 
Trail 

 

 

 
Figure C. Based on our computer classification model, the amounts (hectares) of Not LSOG, Transitioning LS, LS, 
and “old-growth-like” forest in different geographic units. The numbers above the bars indicate the percentage of 
the land unit in the indicated forest class. E.g. 8.68% of BPL ownership is in the LS class. 



 
 

 
WHERE IS LATE-SUCCESSIONAL FOREST? 
 
Maine Bureau of Parks and Lands (BPL) had the highest percentage of LS forest (8.7% of ownership), 
reflecting an ecological emphasis on publicly held forest. By contrast, only 2% of commercial timberland 
was classified as LS forest. Despite this small percentage, private commercial timberlands still 
contained most of the remaining LS forest (60,148 hectares) because private commercial timberlands 
made up 85% of the study area. Therefore, private commercial forest is an important place to focus 
LSOG conservation efforts. Baxter Park, BPL’s Ecological Reserves, and some private conservation 
lands are the only places that are likely growing new LS forest. 
 
HOW FAST ARE WE LOSING LSOG FOREST? 
 
Because the LiDAR we used was flown 6-8 years ago, we were able to calculate rate of loss of LSOG 
forest using Global Forest Watch forest change data, updated through 2023 (Table A). We estimated 
that the LS forest class is being lost at a rate of 1.4%/year for the entire study area. Within the study 
area, BPL was losing LS forest at a relatively slow rate of 0.6%/year, but private commercial landowners 
were losing LS forest at 2.2%/year, or nearly 4 times as fast as public land. Expressed in terms of half-
life, half of the remaining LS forest on private commercial forestland would be gone in 21 years, again 
arguing for a focus on private commercial timberlands for LSOG conservation. 

 
CONSERVATION STRATEGIES 
 
In this report we outline six strategies for LSOG conservation. We can anticipate the need to pay 
commercial landowners for LSOG forest because it can be a financial cost to maintain stands in these 
older age classes. Some strategies include: using our new LSOG maps to target areas for public 
acquisition; the purchase of precision LSOG easements, paying landowners to forgo the timber revenue 
from LSOG stands; and engaging the forest carbon offset market to conserve LSOG stands because 
they have high volumes of carbon relative to younger forest. As the price of carbon goes up to $15-
$25/tonne for CO2 in the voluntary carbon market, LS stands are close to being worth more for their 
carbon than for their wood value. Fiduciary responsibility of commercial forest owners would argue for 
paying attention to this rapidly emerging opportunity. Simultaneously, some landowners are willing to 
manage LS stands in a lighter fashion. Forest certification systems (SFI and FSC) do not prevent LS 
stands from being harvested. 
 
CONSERVATION IMPLICATIONS 
 
In other parts of the world, we have seen the biodiversity implications of a long history of forest 
management. For example, Sweden, which has forest types similar to Maine’s, has a long list of “red-
listed species” (equivalent to our threatened and endangered species), most as a result of the loss of 
older forest age classes. Species conservation becomes expensive when species become endangered; 
it is more cost effective to conserve them before they become endangered. We need a social 
conversation about how much LSOG forest we want and how we want it distributed. Then we can take 
action to get there. We need commercial landowners and conservationists to bring their respective skills 
together to change the trajectory of LSOG loss. We believe this can be done, while maintaining or even 
growing a healthy forest products economy, if we all work together. 

     

  Table A. Estimates of the rate of loss of LS stands from selected ownership types. 
 LS 

Initial  
Hectares 1 

LS 
2023 

hectares 

LS 
Annual Rate of 

Harvest 

 
Half-life 
(years)3 

Study Area 135,672 125,581 -1.40% 35.0 
Maine BPL (Bureau of Parks and Lands) 21,135 20,523 -0.60% 96.1 
Maine BPL (without Ecological Reserves) 17,381 16,388 -0.97% 48.2 
Baxter State Park 2 6,496 6,471 -0.02% 787.0 
Large “industrial” forest owners 68,723 60,603 -2.16% 20.8 
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INTRODUCTION 
 

ext to conversion of forest to other land uses, the loss of older forest age 
classes is the biggest threat to forest biodiversity worldwide.1,2,3,4  This is not 
a surprise. Humans need a lot of wood to survive and thrive, from 

dimensional lumber for our homes to cardboard boxes for shipping. As a result of 
these needs, we affect the age-class distribution of forests worldwide. To produce 
the volume of wood we need, the age of the forest becomes much younger than the 
natural lifespan of most tree species.5,6,7 As a result, managed forests worldwide do 
not get as old as they would in the absence of human needs. Late-successional and 
old-growth forest has become greatly diminished as a result (Fig. 1).8,9,10 
 
Also not surprisingly, much of forest biodiversity evolved in landscapes where trees 
did reach their natural lifespan. When nature takes its course, trees might live two or 
three hundred years in a typical spruce/hardwood forest of northern New England. 
Trees grow old and die from natural causes. Living trees often become snags 
(standing dead trees), or they may blow down and become large logs on the forest 
floor.11,12 Many plant and animal species evolved to take advantage of big and old 
trees (and logs).13,14,15 For example, large old trees are often pocked with the nesting 
or feeding cavities of many bird species. Large old trees often have cracks, broken 
branches, and large crowns that serve as habitat for many different species.16,17 
Many epiphytes (mosses and lichens) prefer large old trees, and they can become 
rare or endangered in places where there are few old trees for substrate.18,19 Large 
old trees often have root cavities at the base, which can serve as den sites for 
different mammals, depending on the size of the tree and the cavity.20,21 In short, 
many species—birds, mammals, lichens, insects, mosses, and fungi, need some old 
trees (and logs) in the greater landscape to persist.22,23,24,25 The biodiversity 
conservation challenge is how to maintain the functions of large old trees, and 
stands of large old trees, in forest landscapes managed to meet our need for wood. 
 
It has been difficult to map and accurately quantify older forest in large forested 
landscapes like Maine. If we do not know how much we have and where it is, it is 
difficult to develop conservation plans to keep it, either across the larger forest 
landscape or at the scale of a sustainably certified timberland owner. This report is 
about how we tested a relatively new remote sensing technology, LiDAR (light 

N

Figure 1 – The financial optimum age for most forest managed for forest products 
in northern New England is 40-60 years old, or 60-100 for some 
hardwood sawlog products. However, important ecological 
characteristics develop when trees are 100 to 200 years old. The 
challenge is how to maintain these older forest functions, and 
associated species, in a managed forest landscape, which makes up 
87% of the unorganized territories of Maine. 
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detection and ranging), for mapping late-successional and old-growth (LSOG) forest 
in the vast unorganized townships of Maine. Ground surveys of the entire 4.2-
million-hectare (10.3-million-acre) study area would be prohibitively expensive. 
However, if LiDAR can do the job remotely, we will have a new tool for mapping and 
quantifying how much LSOG forest remains, and where it is. To date, we have had to 
rely on expensive ground surveys that could not possibly screen the entire area of 
interest. 
 
In this study our goal was to locate, quantify, and map LSOG forest in the 
unorganized townships of Maine using publicly available LiDAR. LSOG stands 
generally have a high density of late-successional forest features, such as large 
trees, snags, and downed logs. Just as old-growth was lost with European 
settlement of Maine in the 1700s and 1800s, much late-successional forest has 
also now been lost in the late 1900s and early 2000s. As you will see in this report, 
we estimate that about 3% of Maine’s unorganized territories is in the more highly 
developed, ecologically rich late-successional stage today, and declining. If LiDAR 
works as a tool to locate remaining late-successional stands, we can then 
understand who owns it, how much there is, and where it is, across a 4.2-million-
hectare area. If LiDAR works, we will have a new tool we can use to conserve this 
ecologically significant and increasingly rare forest. 
 
This report comes on the heels of renewed national 
interest in conserving “mature and old-growth” 
forest. In April 2022, President Biden issued 
Executive Order 14072, also known as 
“Strengthening the Nation’s Forests, Communities, 
and Local Economies.”26 The Executive Order called 
particular attention to the importance of mature and 
old-growth forests, and instructed the U.S. Forest 
Service to conduct a nationwide inventory of federal 
lands.27 The Executive Order pointed out the role of 
mature and old-growth forests for their large stores 
of carbon in relation to climate mitigation, and for 
their importance to the nation’s biodiversity. There 
has also been renewed focus on old-growth forest 
in the eastern U.S.28 
 
Even if LiDAR works for the purpose of quantifying 
older forest age classes in Maine, we will still face 
the question of how we (as a society) balance the 
forest age-class distribution in the unorganized 
townships of Maine (Fig. 2). Do we rely only on 
public lands, which is only about 7% of the area, to 
provide our LSOG forest values? Or, do we also look 
to private timberland owners, who own 85% of the 
area, to help conserve old forest? This is more of a 
social than scientific question. To have the social 
conversation, however, we first need to know how 
much LSOG forest we have and how it is distributed 
across the larger forest landscape. Only then can we 
make informed decisions about how much we want, 
and how we want it distributed, and most 
importantly, just how we might achieve that societal 
goal while preserving rural, vibrant, forest-based 

Figure 2 – The unorganized townships of 
Maine (blue), comprising 4.2M hectares 
(10.3-million acres), or nearly half the state. 
These townships are “unorganized” 
because there are not enough people living 
there to form a local government. About 
90% of the unorganized townships are 
managed for timber and forest products. 

   

We first need to 
know how much 
LSOG forest we 
have and how it 
is distributed 
across the larger 
forest landscape. 
Then, we can 
make informed 
decisions about 
how much we 
want, and how we 
want it 
distributed. 
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communities. If we want it all, we’re going to have to do some hard work, and we’re 
going to have to do that work together. 
 
Maine’s Unorganized Territories 
 
Maine is an unusual place in the eastern U.S. Nearly one-half of the state is 
classified as “unorganized,” meaning not enough people live in this area to form a 
local government (Fig. 2). This area was divided up into “townships” in the mid-
1800s—a misnomer since there are no “towns” in these townships. Despite great 
effort in the 19th century, the state of Maine could not convince people to settle 
here—too many trees to clear and rocks to grub out of the soil for agriculture.29 To 
this day, most townships have no permanent human habitation. Many don’t even 
have seasonal human habitation. 
 
But these townships are not devoid of human impact. Most of the unorganized 
territories of Maine are owned by large corporate landowners who purchased the 
land primarily to make money from the timber. Thus, most of the forest is much 
younger than it would be otherwise. Sometimes natural events, like outbreaks of the 
native spruce budworm or ice storms, can alter the age-class of the forest for 
decades.30,31 But today, the younger condition of most of the forest is a result of 
management for forest products—pulp for paper-making, lumber for construction, 
and many other products, from wood fiber insulation to golf tees. 
 
LiDAR  
 
LiDAR is an “active” remote sensing technique that fires thousands of laser pulses at 
the ground every second, usually from a plane (i.e., airborne LiDAR). The energy is 
generated by the laser; that’s what makes it 
“active.” By contrast, traditional aerial 
photography senses sunlight reflected off the 
forest (hence “passive”). Each LiDAR laser pulse 
bounces off the ground (or a treetop) and returns 
to the plane overhead (Fig. 3). The difference in 
return time (microseconds—or millionths of 
seconds) between the ground reflections (last 
return) and the treetop reflections (first return) 
provides a very accurate estimate of tree height 
(within about 10 cm, or 4 inches). Each pulse of 
LiDAR might reflect off 2 or 3 surfaces before it 
finally hits the ground. As a result, LiDAR 
generates a cloud of points, where every point 
has a very accurate and precise x (latitude), y 
(longitude), and z (canopy height) coordinate. A 
highly precise and accurate “picture” of the forest 
emerges in the form of a point cloud. 
 
While replicating a study of birds and forestry in 
the early 2020s, originally conducted in the early 
1990s,25,32,33 we discovered that LiDAR could 
show us precisely where remaining LSOG forest 
was in our 240,000-hectare (600,000-acre) study 
area in the Moosehead Lake region of Maine. 

Figure 3 – LiDAR is an active remote 
sensing method that fires thousands of 
laser pulses at the ground per second. The 
laser signal bounces off trees and 
ultimately the ground. The difference in 
time it takes the laser reflection to return to 
the sensor on the plane indicates the 
height of the tree with about 10 cm (4”) 
accuracy. 
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This was especially helpful because LSOG forest had become uncommon and 
difficult to find in the study area, yet we needed this forest age class in our sampling 
design to properly replicate the 1990s study. 

   

   
 (a-1) (a-2) 

 (b-1) (b-2) 

  
 (c-1) (c-2) 

Figure 4 – Three examples of LiDAR-derived canopy height models of LSOG stands (left panels). We 
discovered during the “30-Year Bird Study” in 2021 and 2022 that the “blue-
magenta” height signature almost always indicated an LSOG stand. Pictures to the 
right show what the blue-magenta area in the left panel looked like on the ground. 
The red spruce in Fig. 4b-2 was 253 years old, based on the increment core. This 
stand is slated for harvest in 2024. Left panel grids=1 ha units. 
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Fig. 4 shows three examples of LSOG forest using a canopy height model derived 
from LiDAR data. During the bird study, we discovered that the “blue-magenta” 
signature almost always indicated a forest stand with a dominant canopy older than 
100 years, and often 150-250 years old. We speculated that we might be able to use 
the LiDAR-derived canopy height model to map and quantify LSOG forest for the 
entire unorganized township area of Maine (see Fig. 2). 
 
Using LiDAR to find LSOG forest 
 
Other researchers have used LiDAR to find and quantify LSOG forest.34,35,36,37,38,39 
Recently, a study in boreal Canada showed that LiDAR could even distinguish 
between different ages of LSOG forest.40 Because of the large area covered by 
LiDAR flights, and its high resolution, some researchers were able to locate old-
growth forest that was not previously known. We have been able to do the same in 
this study. 
 
LiDAR has been used to locate old forest in the tropics,38,41,42,43,44 the subtropics,39,45 
the temperate zone,46,47,48 and boreal forests.39,49 Most of this research has been 
done in the last five years. Clearly, LiDAR is a new tool that has broad-scale (global) 
applicability for identifying LSOG forest. LiDAR has also been used to link old forest 
to forest biodiversity.50 
 
Although this study’s primary focus is on the identification and location of LSOG 
forest for biodiversity conservation, it is well-known that old forest also can contain 
large stores of carbon because of the large size of trees.51,52,53 There is much 
interest in retaining old forest as reservoirs of carbon because of climate change.54 
We explore an array of LSOG conservation approaches in the Discussion section, 
including carbon offsets through LSOG conservation. 
 
What this work is NOT designed to do 
 
Although we tried to distinguish true old-growth (OG) from late-successional (LS) 
forest in this study, our primary goal was to find LSOG forest in the “operational 
zone” of the larger forest landscape. The operational zone is mostly the areas where 
logging is feasible, which is the vast majority of the study area, and where LSOG 
forest is most at risk. This study did not set out to find stunted old wetland forest or 
stunted high-elevation forest. It is hard for us to know how much of Maine’s wetland 
forest and high-elevation forest might be in an LSOG condition. Using different 
training data, we plan to explore these types of forest in future work. 

Ben Shamgochian in an LS class softwood (pine/spruce) stand (photo by J. Hagan) 
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Methods 
 

ur focus study area was the unorganized townships of Maine (see Fig. 2), 
plus a few organized townships on the periphery to fill in gaps, totaling about 
4.2 million hectares, or about 50% of the land area of Maine. 

 
Generating a canopy height model 
 
We used publicly available LiDAR data flown from 2015 to 2018 to generate a 
canopy height model for the study area. We downloaded LiDAR data “tiles” (about 1 
sq km each) using the USGS National Map Download Application (v2.0).55 LiDAR 
data files are quite large. The entire study area was about 4 terabytes of 
compressed LiDAR data (LAZ files); processing the uncompressed data required 
about 5x more disk storage space. 
 
We used ARCGIS Pro software56 to generate a canopy height model of the study 
area from the raw LiDAR data. The LiDAR pulse rate of this publicly available LiDAR 
data (3-6 laser pulses per square meter) was sufficient to allow us to generate a 
canopy height model with 1 meter horizontal resolution and about 10-centimeter 
vertical (height) accuracy. Although the LiDAR data were 6-8 years old at the time of 
this report, the height of LSOG forest had likely changed little between data 
collection and the time we processed the data (2023), except where LSOG stands 
were harvested after the LiDAR was flown.  
 
The canopy height model generated a very accurate and fine-grained “picture” of the 
forest canopy height (Fig. 4 a,b,c). Using our color symbology for 2 meter height 
classes (Fig. 4), areas with a cluster of blue-magenta pixels (indicating forest 22 
meters and taller) were almost always LSOG stands when we subsequently ground-
truthed them on the bird study. 
 
 
Modeling LSOG forest 
 
We were primarily interested in quantifying and mapping LSOG forest that had a 
high density of late-successional structure with no recent (~50 years) evidence of 
harvesting because it is uncommon to rare in the unorganized townships and, in our 
view, should be a priority for conservation. However, because we could distinguish 
among younger late-successional forest, older late-successional forest, and true 
old-growth in the field, we attempted to build a computer algorithm that could also 
distinguish among these three LSOG classes using LiDAR canopy metrics. See 
Table 1 for our classification system and definitions.  
 
When in the field, we classified stands into one of these classes (including “Not 
LSOG”) based on an array of stand structural characteristics, including sizes of 
trees, presence/absence of recent logging activity (skid trails and sawn stumps), 
presence of long-ago logging activity (e.g., one or a few sawn stumps >50 years 
since harvest), presence/absence of shade-intolerant tree species, and abundance 
of large snags and downed wood. Especially for the LS and Old-growth (OG) 
classes, we viewed historical aerial photos, mostly from the late 1960s, for any 
signs of skid trails at that time. We also cored one representative tree in many LSOG 
stands to get a sense of dominant overstory age, following the Maine Natural Areas 

O 
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Program ecological reserve sampling design. Our field designations to class were 
statistically upheld by analyses of our plot vegetation data (see Fig. 9 later in report). 
 
The definitions of ‘old-growth,’ ‘primeval,’ ‘ancient,’ ‘late-successional,’ and ‘mature’ 
forest can vary greatly even among forest ecologists.57,58 Some argue that age 
should be the main driver of the definitions and others argue it should be 
structure.59,60  In our view, it can be either or both, depending on the forest-
dependent species or function of interest. For example, some species will use the 
structure (e.g., big trees) no matter how old the forest is.61,62 Other species have 
slow dispersal rates (many mosses and lichens) and the presence of suitable 
structure alone is not sufficient.63 For slow dispersers, it takes time for the species 
to recolonize a stand.64,65 In our study, we were focused on forest stands in terms of 
both structure and age—stands that are uncommon and becoming rare, regardless 
of what label different ecologists might assign them. For our purposes, the 
age/structure debate is a distraction from the important conservation discussion 
about how to keep these stands on the landscape. 
 
Although we could use the LiDAR canopy height “signature” model to find LSOG 
forest by simple inspection in ARCGIS Pro, we wanted a more systematized process 

 
Table 1. This study’s forest classification system. The four classes were statistically distinguishable in 

terms of vegetation structure. See Figure 9 later in the report for details. 
 

 
Class Name (code) 
 

 
Description 
 

Not Late-successional or old-growth 
classes 
(Not LSOG) 
 

Not late-successional (LSOG) forest. Includes clearcuts, mid-age forest 
(~30-60 yrs old), and economically mature commercial forest (~60-100 
years old). 
 

 
 
 
 
Late-
successional and 
old-growth 
classes 
(LSOG) 

Transitioning Late-
successional 
(Transitioning LS) 
 

Forest generally past economic maturity, with a higher density of large 
trees, large snags, and fallen logs than Not LSOG stands reference 
above. Transitioning LS could be a Late-successional (LS) forest stand 
(see below) that has been recently partially-cut with a 20-30% canopy 
removal, but still containing significant late-successional qualities, or a 
commercially overmature stand that could become our LS class in the 
next 25-50 years. A sample of cored trees shows these stands had 
overstory trees that were generally 100-150 years old. 
 

Late-successional 
(LS) 

Very high density of large trees and snags; large, downed logs, but not 
as many as true old-growth (see below). If there was evidence of 
harvesting, stumps were usually highly decayed and few in number, 
indicating a light harvest perhaps 50 years ago or more, and then 
probably only for the large spruce. A sample of cored trees shows these 
stands had overstory trees that were generally 150-200 years old, 
although older trees were sometimes present in the LS class. 
 

Old-growth 
(OG) 

True old growth forest by our definition. No evidence or record of 
harvesting activity in the areas we sampled; no logging trails on 1960s 
aerial photos; high density of large trees and especially large, downed 
trees. Had forest dynamics of a steady-state forest with small to mid-
size canopy gaps. No recent fire history. Big Reed Reserve was our 
primary source for OG “training” data. 
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for finding and quantifying LSOG forest for the large study area. To do this, we 
divided the study area into 1-ha units (~4.2 million units). Each hectare was 
comprised of 10,000 1x1 m data points (1 hectare=100x100 m). We generated eight 
descriptive canopy metrics (Table 2) for each of the 4.2 million hectares in the study 
area using the Tufts High Performance Computing Cluster.66 These computations 
took about 36 hours of computing time to complete. The calculations could be done 
on a desktop computer or even a laptop but would have taken about 3 weeks of 
computing time. For more information on the rugosity and rumple metrics, see 
Reference 67 in the Endnotes.67 
 
We then used random forest,68,69,70 a classification algorithm, to classify each of the 
4.2 million hectares into one of four categories: (1) Not LSOG, (2) Transitioning LS, 
(3) LS, and (4) Old-growth (Table 1). Although our primary interest was in the LS 
class, we provided training hectares for Transitioning LS, LS, and true OG, to see 
whether the random forest model could differentiate among these three LSOG 
classes based on the eight canopy metrics. We can readily distinguish among these 
classes in the field. To classify the entire study area, we needed known “training” 
hectares for the four forest classes in Table 1 so that random forest could try to 
extract statistical differences among the classes using the eight LiDAR metrics. We 
ran the random forest model 500 times, each time using a different random subset 
of the training data to build a single best differentiating model. This best model was 
then used to assign all the remaining hectares in the study area to one of the four 
forest classes, based on each hectare’s eight canopy metrics. 
 
For the training data, we used a combination of 361 hectares from our 2021-2022 
bird study and an additional 102 hectares from Transitioning LS, LS, and true OG 
sites we surveyed throughout the unorganized territories in 2023 (n=463 total 
training hectares). Our training hectares included hardwood, softwood, and 
mixedwood forest of all ages, from clearcuts to true OG forest. However, we had 
relatively few true OG training hectares, which may explain why the model had 
difficulty distinguishing between LS and OG (see Results). We plan to address this 
issue with further research using a model including additional true OG training 
hectares and more LiDAR-derived metrics. 
 
When in the field, we classified each training hectare as one of the four categories 
listed in Table 1. The field classification was based on observations at the site, 
including estimated time since harvesting, the presence or absence of early-
successional, shade-intolerant tree species, the number of large-diameter trees in 
the overstory, the abundance of large snags and logs, and our overall impression of 
the forest stand. Our old-growth reference sites were from The Nature 

Table 2. Eight canopy metrics derived from the LiDAR canopy height model. These eight metrics were calculated 
for each “training hectare” and for all hectares in the 4.2-million-hectare study area. 

 
Canopy Metric Description 
Mean canopy height The mean pixel height (of 10,000 1-m2 pixels per hectare) 
Maximum canopy height The maximum pixel height (of 10,000 1-m2 pixels her hectare) 
95th percentile canopy height The 95th percentile pixel height (of 10,000) 
Canopy rugosity The standard deviation of pixel (canopy) height (of 10,000 1-m2 pixels her hectare) 
Rumple index  A measure of canopy surface area divided by the ground surface area (ratio) 
Cover fraction over 2m The fraction of pixels over 2m in height within the hectare 
Cover fraction over 6m The fraction of pixels over 6m in height within the hectare 
Cover fraction over 15m The fraction of pixels over 15m in height within the hectare 
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Conservancy’s 2,000-hectare (5,000-acre) Big Reed Forest Reserve in township 
T8R10, and another nearby 283 hectare (700-acre) old-growth tract. Accurate 
classification of the training hectares is critical to producing an accurate 
classification of the larger landscape using the random forest model. Our 
classification of a continuum of forest and structure into categorical bins is 
unavoidably subjective. Detailed ground vegetation surveys were conducted to 
support our field classification. 
 
Ground-based vegetation data 
 
At each of the 463 training-data hectares, we collected vegetation data to provide a 
more quantitative description of the forest LSOG classes. We used both 10x50 m 
vegetation plots and 10x100m plots, but all metrics were standardized for area 
sampled. The 10x50m plots were conducted for the “30-Year Bird Study” in the 
Moosehead Lake region in 2021 and 2022.32 We added additional 10x100m plots 
from across the unorganized townships in 2023. We switched to the larger 
10x100m plots in 2023 to reduce the variance among plots and to be more efficient 
in our sampling effort.  
 
In each plot, we measured all living and dead trees ≥ 8 cm dbh. The species of each 
tree and its decay stage were recorded.71 We also recorded the presence or absence 
of five late-successional indicator lichens and mosses.72,73 We used a line transect 
method to estimate the volume of downed woody debris.74 
 
Model validation 
 
Random forest validates the model by using only 70% of the training data (selected 
at random) to build the model, and then classifies the remaining unused 30% of the 
training hectares using the model it generated. Random forest then compares its 
predictions to the true designation we gave the site in the field. Random forest 
repeats this process 500 times, each time randomly selecting a different 70% of the 
training data for building a model. The classification error rate of the unused 30% of 
hectares is then used to estimate the model’s classification accuracy. This is the 
generally accepted approach to model validation. However, we went further. In 2024 
we ground-truthed the model output by visiting not-previously-sampled hectares 
across the state to evaluate model predictions ourselves. This provided a more 
rigorous field evaluation of random forest that is seldom conducted. 
 
Estimating LS Class rate of Loss 
 
We estimated the rate of loss of LS class stands using annual updates of Global 
Forest Watch (GFW) forest change data. GFW categorizes 30x30 m pixels as having 
experienced forest loss, forest growth, or no change based on an analysis of yearly 
satellite imagery.75 A pixel is categorized as forest loss (harvested) if >30% of the 
canopy has been removed. Because LiDAR was flown for most of the study area 
from 2015 to 2018, and the GFW data were available through 2023, we overlayed 
the GFW data onto our LSOG classification map to find LS stands that were 
harvested since the LiDAR was flown. Note that GFW does not tell us what kind of 
harvest has occurred. Some harvests, such as many on Bureau of Parks and Lands 
ownership, were too light to be detected by GFW and thus the true harvest rates of 
the LS class may be higher than we report. 
 
Because the LiDAR for different regions of the study area were flown from 2015 to 
2018, it was necessary to calculate annual harvest rates for each region and 
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ownership type separately. We then calculated a weighted average annual rate of LS 
loss, where the weighting factor was the area of LS class contained in the within-
year LiDAR set (i.e., set = year of acquisition). 
 
Limitations 
 
There are a few limitations to our assessment using LiDAR. First, we did not try to 
map stunted, high-elevation, old forest. Our interest in this study was in the 
“operational zone” managed for timber—areas with reasonably good soils and 
accessible to harvesting equipment, which is, by far, most of the study landscape. It 
is also the area most at risk for loss of LS class stands. We make no claims about 
mapping old, high-elevation forest in this study. Indeed, because of this, we masked 
out areas higher than 823 m (2,700 ft) in our analyses.76 Our model also does not 
work as well with some areas mapped as wetlands (e.g., black spruce swamps or 
bogs) in the Maine wetland GIS data layer. However, we did include some LSOG 
stands as training hectares that were within the Maine GIS wetland data layer. A 
fertile area of future research would be to create a LiDAR-derived model for just old 
wetland forest that was trained on known LSOG sites verified by a forest ecologist. 
The random forest algorithm could likely locate wetland LSOG stands as well. All it 
needs is accurate training data. We also know old forest can be stunted (short) on 
poor soils, but our model used canopy metrics other than just height (see Table 2). 
We also need to better understand how steep, abrupt changes in elevation might 
affect the canopy metrics, because accurate and precise estimates of the ground 
elevation are key to generating the canopy height statistics. 
 
Finally, because our model classified forest at the unit of a single hectare, we could 
miss small LSOG forest patches smaller than a hectare, and narrow “ribbons,” such 
as riparian buffers. Our preliminary analyses of riparian buffers suggest that, while 
LSOG forest in buffers is important, it makes up a small proportion of the LSOG 
forest in the greater landscape. 
 
 
 Molly Taylor (left) and Ben Shamgochian (right) with a 202-year-old red spruce in an LS class stand (photo by J. Hagan) 
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Results 
 

sing eight canopy metrics (see Table 2) from the 463 known-class (see Table 
1) hectares as training data, the random forest model classified the 
remaining roughly 4.2 million hectares within the area of interest. We 

inspected the model output for areas we knew to be LSOG forest but not used in the 
training data. This inspection indicated that the model was working well for 
discriminating Not LSOG from the three LSOG classes. A good example is Maine 
Audubon’s Borestone Mountain Sanctuary, which is well known to contain 
substantial LSOG forest, but was not used as training data in the model (Fig. 5).  
 

U

 

(a) 

 
 

 
 
 
 
 
 
Model 
Classification Key 
 
 Not LSOG 
 Trans LS 
 LS 
 “OG-like” 
    

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

   
Figure 5 – (a) LiDAR canopy height model for the greater Borestone Mountain 

Sanctuary area. (b) random forest LSOG classification of each 
hectare in the same Borestone area. Note how the random forest 
classification aligns with the “blue-magenta” signature of the 
canopy height model. Grid=1 km2. 

Borestone 

Appalachian Trail 
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Note that we refer to hectares classified as OG as “Old-growth-like.” This is because 
the model was not very good at identifying true OG (see validation results below), 
but it was “seeing” something in the canopy structure data that looked like OG. We 
do not want readers to conclude that hectares classified as “OG-like” by the model 
are true OG. Before further evaluation of the results, let’s look at the accuracy of the 
model output using two methods. 
 
Validating the model classification 
 
The most important result to report before further interpretation of the LiDAR-
generated LSOG model relates to the accuracy of the random forest classification 
algorithm. We used two methods to validate the model results. Method 1 was the 
traditional internal validation of the model using the training hectares used by the 
model itself. Method 2 involved ground-truthing the model’s output in the field. 
 
Method 1 – Random forest (model) validation 
 
Table 3a shows the model’s accuracy in classifying “unused” training hectares into 
either Not LSOG or one of the three LSOG classes (refer to Table 1). The model has 
a 94.1% accuracy rate at correctly assigning a hectare to these two classes. The 
model validation indicates that if a hectare was classified into one of the 3 LSOG 
classes, it was indeed LSOG. What we conclude from this result is that any hectare 
classified into one of the three LSOG classes should probably be screened for late-
successional or old-growth characteristics on the ground before making harvesting 
decisions. 
 
Table 3b shows how the model classified hectares among the three LSOG classes. 
Not surprisingly, the model did less well here. But it still correctly classified 
Transitioning LS hectares and LS hectares correctly the vast majority of the time. It 
did not do a good job of correctly classifying the true OG hectares as “OG-like.” We 
revisit how to improve old-growth classification in the Discussion. 

_____________________________________________________________________________________  
 
Table 3a. Model validation results, Method 1 for Not LSOG vs. LSOG classification. 

Aid in interpretation: For example, of the 13+168=181 plots known to be in 
one of the LSOG classes based on classification in the field, 13 were 
misclassified by the model as Not LSOG. 

 
  Class Predicted by Model 
  Not LSOG LSOG 

Actual 
Class 

Not LSOG 268 14 
LSOG 13 168 

 
 
Table 3b. Model validation results, Method 1 for the three LSOG classes. Aid in 

interpretation: For example, 9+69+1=79 plots known to be in the LS class 
based on classification in the field, 9 were incorrectly classified as 
Transitioning LS by the model, and 1 was misclassified as “old-growth-like.” 

 
  Class Predicted by Model 
  Transitioning LS LS “Old-growth-like” 

    

Actual 
Class 

Transitioning LS 61 10 1 
LS 9 69 1 
True Old-growth 4 8 5 

 
_____________________________________________________________________________________  
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Method 2 – Field validation 
 
A complementary validation method is to ground-truth classified hectares that were 
not used as training data for the model. This is a more rigorous test of real-world 
performance because these “novel” hectares were not used to build the model, and 
may contain variability not captured by the training hectares.  
 
While time and funding were limited for Method 2, we were able to visit 83 hectares 
in 2024 that were not used in building the model. Albeit limited, the results are still 
worth reporting. 
 
Table 4a shows the results from field validation. Again, the model had a very high 
(92.8%) accuracy in correctly classifying a hectare as either Not LSOG or one of the 
three LSOG classes, which is very similar to the results of Validation Method 1 
above. Table 4b shows the results for the three LSOG classes. Note that we did not 
have any true OG sites to sample for the field validation (hence 0’s across the “True 
Old-growth” row). The model correctly classified Transitioning LS 78% of the time 
and LS 76% of the time. One of the reasons the field validation was not as good as 
in Method 1 was because field hectares sometimes fell on stand boundaries, and 
the model struggled to classify hectares split across stands. This is an 
understandable feature of the real world. Still, most of the time, the model correctly 
classified Transitioning LS and LS. This means that a forester could depend on the 
model being right most of the time. From our perspective, ground truthing of the 
model’s classification will always be warranted before harvesting or conserving a 

stand. 
 
Summary of Validation Results 
 
With the results of these two validation methods, we feel confident in the model and 
therefore estimates of the amounts of the four forest classes in the study area. 
Despite some false positives and false negatives, this model was 93% accurate in 

_____________________________________________________________________________________  
 
Table 4a. Model validation results, Method 2 (field validation) for Not LSOG vs. LSOG 

classification. See captions in Table 3 for aid with interpretation. 
 

  Class Predicted by Model 
  Not LSOG LSOG 

Actual 
Class 

Not LSOG 19 1 
LSOG 5 58 

 
 
Table 4b. Model validation results, Method 2 (field validation) for the three LSOG 

classes. We did not visit any true old-growth sites for the field validation. See 
captions in Table 3 for aid with interpretation. 

 
  Class Predicted by Model 
  Transitioning LS LS “Old-growth-like” 

    

Actual 
Class 

Transitioning LS 14 4 2 
LS 12 25 1 
True Old-growth 0 0 0 

 
_____________________________________________________________________________________  
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differentiating hectares between an LSOG condition and Not LSOG. Additionally, the 
model correctly classified hectares among the three LSOG classes at least 70% of 
the time, with true OG being an exception. Keep in mind that both Transitioning LS 
and LS hectares have high ecological value and are worth conserving, even though 
the LS class had a significantly higher density of late-successional characteristics 
than Transitioning LS, on average. Both Transitioning LS and LS have a significantly 
higher density of late-successional characteristics than the average forested 
hectare in the study area. While there is room to improve the model, it provides an 
extraordinarily cost-effective way to quantify LSOG forest in the unorganized 
townships in Maine, a task that was previously prohibitively expensive. 
 
How was LSOG forest distributed among landowner types? 
 
Given that the random forest model appeared surprisingly accurate in distinguishing 
Not LSOG forest from the three LSOG classes, we evaluated the amount and 
location of the forest classes across different forest ownership types. For example, 
we were able to estimate the amount of LSOG forest on public lands, private 
commercial forest ownerships, or even by watershed. Since we generated a single 
LSOG classification map for the entire study area, we can partition the map by any 
spatial unit of interest. 
 
For this report, we assessed LSOG forest for six spatially explicit geographic areas:  
 

1. Full 4.2M-ha study area (mixed private and public) 
2. All private commercial timberlands (private) 
3. All forests in a conservation easement (private) 
4. Allagash River, entire watershed (mixed public and private) 
5. Bureau of Parks and Lands (public) 
6. Baxter State Park (public) 

 
The entire land area of the study area was 4,186,196 hectares (10,339,904 acres). 
This excludes land above 823 meters (2700 feet) and tribal lands, for which LiDAR 
data were not available. Of the total area analyzed, 80.3% was Not LSOG, 15.9% was 
Transitioning LS, 3.0% was LS, and 0.9% was “old-growth-like” (Fig. 6).  
 
Transitioning LS (green bars in Fig, 6) was a rather wide category on the ground. 
Some Transitioning LS stands did not yet have the structure of an LS forest, but still 
had considerable late-successional quality that was either just starting to develop, 
or residual quality after a light partial harvest (<30% removal) of an LS stand. The LS 
class (light blue bars) was the most consistently exceptional from a forest structure 
and age perspective. Often LS hectares were embedded in a larger area of 
Transitioning LS (see Fig. 5 for an example). Sometimes there would be predicted 
old-growth hectares mixed in with predicted LS hectares (also see Fig. 5).  
 
Where there is a mixture of LS and “Old-growth-like” (dark blue bars) hectares, we 
recommend ground-truthing by ecologists to determine if the stand is true OG. As 
demonstrated with the validation results above, hectares classified as OG-like were 
not likely true old-growth. The random forest model was sometimes fooled into 
thinking a light partial cut was a true OG stand because the canopy was tall and 
canopy gaps of a light partial harvest mimicked the natural gaps of a true old-
growth forest. We have plans to improve the model for identifying true OG. 
 
We focused primarily on the LS class hectares because it is an increasingly 
uncommon forest age/structure class. Though not perfect, the random forest 
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algorithm was applied in the same way to every hectare in the entire study area—
that is, the “yardstick” was identical. Therefore, we felt that it would be instructive to 
compare the amounts of LS class forest on different ownership types. Of any 
landowner type we analyzed within the study area, Bureau of Parks and Lands (BPL) 
lands had the highest percentage of LS forest (8.7%), reflecting the “lighter touch” of 
BPL forestry for the conservation of public values, including old forest conservation 
(Fig. 6). 
 
By contrast, the private commercial landowners only had 2.0% LS forest. Of the 
75,864 hectares of Baxter State Park, 8.5% was LS class, very similar to BPL lands. 
(NOTE: the northwestern township of Baxter State Park is allocated to experimental 
forestry, the Scientific Forest Management Area [SFMA], where some harvesting 
takes place). Conservation easements, which are mostly on commercial 

 

 
 

 
 

 
Figure 6 – (Top) total forest area in each of the forest ownership types, by forest class. (Bottom) The percentage 

of each ownership type by forest class. See Table 1 for definitions of forest classes. All area totals and 
percentages are restricted to the 4.2M hectare study area only. 

 

Numbers above bars 
indicate percent of 
ownership type  

Numbers above bars 
indicate total hectares of 
ownership type 
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timberlands, only had 1.6% in the LS class. The Allagash River Watershed fared a 
little better, with 2.2% in LS, largely because of the BPL ownership embedded in the 
watershed. The same general pattern followed for the younger Transitioning LS 
class, except that there was a lot more Transitioning LS than LS (Fig. 6). 
 
We can provide customized LSOG statistics and an LSOG map (GEOTIF or SHP file) 
to any landowner in the study area, upon request.77 
 
These results lead to a logical question—'how much LSOG forest do we want or 
need in Maine, and how should it be distributed across the unorganized townships?’ 
We revisit this question in the Discussion section. 
 
How big (or small) are LSOG stands? 
 
A logical question for conservation planners is ‘how big are these LSOG parcels or 
stands?’ The answer to this question might give planners useful information on 
where to focus land acquisition efforts if LSOG conservation is a goal. We plan to 
issue a follow-up report that focuses on our ideas for LSOG conservation 
prioritization. However, in this report we want to give readers some idea of how 
LSOG parcels are distributed in terms of area class (i.e., spatial extent of identified 
parcels). 
 
Because our computer model classified every single hectare individually, 
irrespective of the forest class of surrounding hectares, we thought it would be 
more useful to conservation planners if we aggregated hectares into a simpler 
classification. 
 
To that end, we did two analyses. First, we aggregated all LSOG classes 
(Transitioning LS, LS, and OG-like) into a single class for mapping and analysis of 
area class. We then analyzed the area class distribution of the resulting aggregated 
class. Figs. 7a and 7b show the aggregation graphically. 
 
Second, to focus on just the two forest classes with a high density of late-
successional features, we aggregated just the LS and “OG-like” classes into a single 
class, and deleted Transitioning LS hectares from the area-class analysis. Figs. 7a 
and 7c demonstrate this aggregation. We then analyzed the frequency distribution 
of the areas of the resulting parcels. 
 
The statistical results of both aggregations, shown in Fig. 8, tell a complex 
conservation story. First, we see that in both methods there are thousands of small 
“gemstones” of LSOG forest throughout the study area. For example, there are 
21,783 distinct parcels of LSOG in the 1-5 hectare class (the 3 classes combined, 
Fig. 8a), totaling some 58,621 total hectares in the study area. At the other end of 
the area spectrum, there were 386 distinct parcels greater than 250 hectares in the 
study area, totaling over 432,000 hectares (~1.1 million acres) (Fig. 8a). Of course, 
with our spatially explicit model, we know the location of each of these 386 parcels 
in the study landscape. This is new information for conservation planners and forest 
landowners. 
 

   

We can provide 
customized LSOG 
statistics and an 
LSOG map 
(GEOTIF or SHP 
file) to any 
landowner in the 
study area, upon 
request. 
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We can look at the same statistics for the LS+”OG-like” two-class aggregation, which 
highlights the more exceptional late-successional and “old-growth-like” parcels. In 
this aggregation, there were 10,021 parcels in the 1-5 hectare category, summing to 
27,515 hectares in the study area (Fig. 8b). At the larger end of the area spectrum, 
there were only 45 parcels >250 hectares in extent, totaling 24,978 hectares (Fig. 
8b). 
 

                 (a) original model classification 
Model 
Classification Key 
 
 Not LSOG 
 Trans LS 
 LS 
 “OG-like” 

    

 
  

  (b) all LSOG classes aggregated (Transitioning LS, LS, and “OG-like”) 
 

 
  
          (c) LS+”OG-like” classes aggregated (Transitioning LS deleted) 

 

 

Figure 7 – How we aggregated classification boundaries to evaluate patch/stand area classes. (a) the 
original classification (same as Fig. 5b, the Borestone Mountain area); (b) reclassification by 
aggregating all Transitioning LS, LS, and “OG-like” hectares into a single class; (c) 
reclassification by aggregating just LS and “OG-like” hectares into a single class, and deleting 
Transitioning LS hectares. See Fig, 8 for resulting summary statistics for the entire study area. 
(Grid=1 km2) 



                                                  PAGE 18 

This analysis highlights the need for at least two LSOG conservation approaches— 
one focused on the larger parcels and another focused on the smaller parcels. We 
make the case in the Discussion section below that it would be a conservation 
mistake to ignore the thousands of small remnants of LSOG forest, which can play a 
critical role in maintaining many late-successional species widely distributed 
throughout the study area. These small patches could also play a critical role in re-
establishing slow-dispersing species into adjacent, regrowing forest. As important 
as the larger parcels are, so are the small patches from a species conservation 
perspective. We recognize that thousands of small patches might present a 
conservation planning challenge, but our model maps them all in a GIS system to 
their precise location, so it is easy to inventory and track them. 
 
Ground vegetation structure and composition, by LSOG class 
 
We generated an array of ground-based vegetation metrics derived from field data 
collected at each of the 463 training hectares to characterize stand structure of 

  (a) all Transitioning LS, LS, and OG-like polygons are aggregated 
 

Total Area Number of polygons 

  
 

  (b) only LS+OG-like class polygons are aggregated 
 

Total Area (ha) Number of polygons 

  
Figure 8 – The total area and number of polygons of LSOG patches or stands by area 

class. (a) All Transitioning LS, LS, and “OG-like polygons are aggregated 
into a single, combined forest class. (b) Only LS + “OG-like” patches are 
aggregated into a single, combined forest class. 
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each LSOG class (Fig. 9). Different metrics functioned in different ways to 
distinguish among the four forest classes. For example, live tree basal area 
distinguished Not LSOG from the aggregate of Transitioning LS, LS, and true OG, but 
the three LSOG classes did not partition by live tree basal area (Fig. 9a). That is, live 
tree basal area would not be a good metric for distinguishing among Transitioning 
LS, LS, and true old-growth in our study area. By contrast, dead tree basal area 
nicely distinguished old-growth from other classes, but this metric was not different 
between Transitioning LS and LS hectares (Fig. 9b). Not LSOG had significantly 
lower dead tree basal area.  
 
The density of large-diameter (≥ 40 cm [16”]) trees was the same in LS and OG, but 
higher than Transitioning LS (Fig. 9c). As expected, Not LSOG stands had a very low 
density of trees ≥ 40 cm dbh. 
 
The proportion of total basal area in trees ≥ 40 cm dbh nicely separated among all 
four classes (Fig. 9e). Even though total live basal area was similar between LS and 
OG, a greater proportion of the basal area in OG stands was in larger trees. 
 
The volume of coarse woody material was also significantly higher in OG than in all 
other classes, and it appeared to increase with stand age (Fig. 9f). 
 
The quadratic mean dbh was higher for LS and OG than for the other classes, but 
not different between the two (Fig. 9g). By contrast, the coefficient of variation in 
dbh was higher in old-growth than in LS, but LS was not different from Transitioning 
LS (Fig. 9h). 
 
To explore whether there were statistical differences among the four forest classes 
in “8-dimensional space” using all eight vegetation metrics simultaneously, we used 
Principal Components Analysis to generate a single derived metric (PCA 1) to 
capture this complexity. Fig. 9i shows PCA 1 scores for all four LSOG classes. PCA 1 
shows clear separation among all four LSOG classes using the integrated 
information from all eight vegetation metrics. 
 
All these metrics, including the PCA 1 score, suggest that our field assignment of 
the training data hectares indeed reflected real structural differences among the 
four LSOG classes, giving us confidence in our field classification of training 
hectares.  
 
LiDAR variables by forest class 
 
The logical follow-up question is whether our eight LiDAR-derived canopy metrics 
distinguished among the four forest classes (see Table 1) as well as ground-based 
vegetation metrics. Our two validation methods discussed previously already 
showed that LiDAR metrics alone can quite accurately classify “novel” hectares 
(hectares never visited for LSOG identification). However, inspecting each of the 
LiDAR variables might shed light on how these metrics work to distinguish LSOG  
classes. Recall that the eight canopy metrics are derived from 10,000 x (longitude), y 
(latitude), and z (canopy height) values at 1 m2 resolution for every hectare. In Fig. 
10. we show the statistics for the eight LiDAR metrics for the 463 training data 
hectares. As with the ground-based metrics, some LiDAR metrics distinguished 
among some of the LSOG classes but not others. 
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For example, the mean canopy height was slightly shorter in old-growth than in LS 
forest (Fig. 10a). This should not be surprising. True old-growth stands have natural 
tree-fall gaps that can result in a patchy, shorter forest at the scale of an individual 
large tree (e.g., a 20-30 m horizontal forest gap). 
 

(a) Live tree basal area 

 
 

(b) Dead tree basal area 

 

(c) Number of trees ≥ 40 cm/ha 

 

(d) Basal area ≥ 40 cm dbh 

 
 

(e) proportion basal area ≥ 40 cm 

 

(f) Course woody material 

 

(g) Quadratic mean dbh 

 

(h) Coefficient of variation dbh 

 

(i) PCA1 scores of 8 veg variables 

 
 

 
Figure 9 – Ground measurements of vegetation at the training data (known-class) sites across the four LSOG 

classes. Fig. 9(i) is a derived metric of variables (a) through (h) using Principal Components 
Analysis. That is, it shows how the four LSOG classes separate in 8-dimenensional space. 

KEY 
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The 95th percentile of canopy height was similar between LS and OG and 
significantly taller than in Transitioning LS (Fig. 10b). The maximum canopy height 
was also similar between LS and old-growth (Fig. 10c). The fraction of the canopy x, 
y, z coordinates above 2 m (Fig. 10d) and above 6 m (Fig. 10e) was similar among 
Transitioning LS, LS, and OG. This is because all three of these LSOG classes have 

(a) Mean canopy height (m) 

 
 

(b) 95th percentile canopy height  

 

(c) Max canopy height (m) 

 

(d) proportion canopy above 2 m 

 
 

(e) proportion canopy above 6 m 

 

(f) proportion canopy above 15 

m  

(g) canopy rugosity 

 
 

(h) canopy rumple statistic 

 

(i) PCA 1 of all LiDAR variables 

 
 

 
Figure 10 – Eight LiDAR metrics from training data (known-class) hectares across the four LSOG 

classes. Fig. 10(i) is a derived metric of variables (a) through (h) using Principal 
Components Analysis. It shows how the four LSOG classes separate in 8-dimensional 
space across the four LSOG classes. 
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most of the hectare’s canopy above these two height categories. However, the 
fraction of the canopy above 15 m is much lower for OG than for LS (Fig. 10f). Again, 
this is because OG forest tends to have canopy gaps due to natural tree falls. Even 
though LS forest is old (150+), LS forest typically has not yet attained the natural 
forest dynamics of true old-growth. 
 
Of the two LiDAR metrics that represent canopy unevenness, canopy rugosity (Fig. 
10g) increased as the forest aged (rugosity is a measure of the standard deviation 
of the 10,000 z [canopy height] coordinates for each hectare). The rumple statistic, 
which is the ratio of the surface area of the canopy to the surface area of the 
ground, did not distinguish among the three older forest classes. We expected this 
metric to behave the same as rugosity. 
 
Finally, the first principal component derived from the eight LiDAR metrics 
separated Not LSOG and Transitioning LS from the older two classes, but struggled 
to differentiate between LS and OG (Fig. 10i). This explains why the random forest 
model, which is built on these eight metrics, struggled to distinguish between true 
old-growth and LS hectares.  
 
Do ground-based vegetation metrics correlate with LiDAR-based canopy 
metrics? 
 
We explored whether the eight LiDAR-derived metrics captured much of the same 
“information” about the hectare as the eight vegetation variables did using canonical 
correlation.78,79 The model was highly significant (P<0.001), indicating that the LiDAR 
metrics were indeed capturing much of the information in the vegetation data. A 
graphical representation of this is shown in Fig. 11, which shows the first principal 

 
 
Figure 11 – A plot of PCA 1 

derived from the 
eight LiDAR metrics 
vs. PCA 1 derived 
from the eight 
vegetation metrics. 
The strong positive 
correlation indicates 
that the two datasets 
contained much of 
the same 
“information” about 
the training hectares. 
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component derived from the eight LiDAR metrics against the first principal 
component derived from the eight vegetation metrics. Though not perfect, the 
correlation is highly statistically significant (P<0.001). 
 
Canopy height profiles derived from the LiDAR 
 
Ecologists have long used vertical height profiles to describe forest structure.80,81,82 
Before LiDAR, generating vertical height profiles involved painstaking field work and 
typically resulted in increasing measurement error as the height of the canopy 
increased above the ground (above the observer). To further explore structural 
differences among the four forest classes, we used the “z” (canopy height) 
coordinate from the LiDAR to create a graphic that represented the height of the 
canopy surface (Fig. 12). 
 
The canopy height profiles capture the structural evolution of the canopy surface as 
the forest ages. Not LSOG stands are comparatively short, as expected. The canopy 
surface increases in height through Transitioning LS, LS, and OG. Notice the true OG 
hectares start to take on a more sinuous shape. This is because of the development 
of natural tree-fall gaps associated with true old-growth, but which are not yet 

 
 

 
Figure 12. Canopy height (meters) profiles of the 463 training hectares. Each bar represents the 

proportion of the “z” (canopy height) coordinates in the specified height class (y-axis). 
The proportions were derived from the 10,000 z coordinates derived from LiDAR for 
each training hectare. Note the “S” shaped canopy height profile emerging in the true 
old-growth hectares. 
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developed into fully structural LS stands. In future work we plan to include metrics 
of the canopy profile in an effort to improve our discrimination of LS and OG forest. 
 
How fast are we losing LS stands? 
 
Based on Global Forest Watch forest change data through 2023, we estimate the 
rate of loss of LS forest to be -1.4% per year for the study area. Assuming all forest 
was treated the same, at that rate we would lose half of the remaining LS forest in 
35 years (Table 5). Of course, different landowners have different management 
strategies. 
 
To compare the rate of loss on public vs. private ownership, we calculated the rates 
separately for Bureau of Parks and Lands (public), Baxter State Park (public), and 
“industrial” commercial forest lands (private). We did not include private 
conservation working forest lands (e.g., TNC, AMC) in the “industrial” calculation.  
 

The rate of existing LS loss on all BPL lands was -0.60% per year (Table 5). At this 
rate, half the remaining LS forest on BPL land would be lost in ~96 years. This 
calculation includes BPL’s off-limits-to-harvesting ecological reserves. Prohibition of 
harvesting in the ecological reserves results in a lower overall rate-of-loss estimate 
for BPL lands. If we just consider harvestable areas of BPL ownership, rate-of-loss is 
about -0.97%/year, with a half-life of 48 years. By contrast, private industrial 
forestlands are losing LS at a rate of 2.2% per year, with a half-life of ~21 years 
(Table 5). That is, private industrial forests are losing LS stands at 3.6x the rate of 
public lands. This statistic highlights the urgency of developing LS conservation 
strategies for private commercial timberlands, especially since these lands contain 
most of the remaining LS forest (see Fig. 6). Note that our half-life estimates are 
based on harvest rates over the past 6-8 years. Our estimates assume the annual 
amount of LS harvested remains the same going forward. We have no way to 
predict future LS harvest rate other than to look backwards at the harvest data. 
 
Because timber harvesting is only allowed in about 14% of Baxter State Park (the 
Scientific Forest Management Area, SFMA), the rate of LS loss for the whole park 

____________________________________________________________________________________  
 
Table 5. Estimates of the rate of loss of LS stands from selected ownership types. Half-lives are 

projections based on the rate of LS harvest over the past 6-8 years. Rates of loss are 
derived from Global Forest Watch data through 2023. 

 
 LS 

Initial  
Hectares 1 

LS 
2023 

hectares 

LS 
Annual Rate of 

Harvest 

 
Half-life 
(years)3 

Study Area 135,672 125,581 -1.40% 35.0 
Maine BPL (Bureau of Parks and Lands) 21,135 20,523 -0.60% 96.1 
Maine BPL (without Ecological Reserves) 17,381 16,388 -0.97% 48.2 
Baxter State Park 2 6,496 6,471 -0.02% 787.0 
Large “industrial” forest owners 68,723 60,603 -2.16% 20.8 

 

1 year of initial LS estimate is 2016, 2017, or 2018, depending on the year in which the LiDAR was flown. Annual rates of harvest are 
adjusted for the number of years elapsed since the LiDAR for an area was flown. 

2 includes the Scientific Forest Management Area, which allows limited harvesting. Harvesting is not permitted in about 86% of the park. 
3 we calculated the first half-life of a zero-order rate of decay, which is appropriate for a fixed amount of “decay” regardless of the amount of 

LS forest remaining. That is, the amount of LS harvested each year is not likely dependent on the amount of remaining LS. The half-life 
starts in 2023. 

 
_____________________________________________________________________________________  
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was only 0.02% per year, or a half-life of 787 years (Table 5). Therefore, more forest 
is probably entering the LS condition in Baxter than is being lost in the SFMA. 
 
It’s important to note we are not able to calculate hectares entering the LS class, 
although this will change soon (see Discussion: Future Research). Because 
harvesting is allowed on most BPL lands, new LS forest may be generated only in 
ecological reserves. Except in ecological reserves, existing LS hectares experience 
BPL’s relatively light removals, dropping the LS stand to a Transitioning LS class in 
our classification system. It is unlikely that very many new LS hectares are being 
created on private commercial timberlands, although we know of exceptions to this 
statement on Baskahegan Co.’s ownership, which was heavily cut over in the first 
half of the 20th century, but has some significant LS stands today.83  
 
The loss of LSOG forest to natural disturbances may also occur, but fine-scale (tree-
scale) disturbance is a normal part of LSOG stand dynamics and would not take the 
stand out of an LSOG condition by our definition. By contrast, fire, ice storms, or 
budworm outbreaks could all take a stand out of an LSOG class. Some ecologists 
would consider those stands to still be LSOG, just with a different stand trajectory 
and history.  

Molly Taylor preparing to sample an LS class hardwood stand (photo by J. Hagan) 
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Discussion 
 

e have shown that publicly available LiDAR can precisely and accurately 
identify LSOG forest, remotely, with greater than 90% accuracy. This new 
knowledge creates an opportunity to have a social conversation about how 

much LSOG forest we, as a society, want, and how we want it distributed across a 
forested landscape. 
 
How well did the LiDAR model find LSOG forest? 
 
Our two validation methods, one computer-based and one field-based, showed the 
same result. The model could distinguish quite well between Not LSOG forest and 
LSOG with 94% accuracy. Keep in mind that we are trying to categorize something 
that is a continuum of multiple forest development pathways involving age and 
structure, which is inherently difficult to classify. The model was still good, but less 
accurate at distinguishing among the three LSOG categories (see Table 1)—
Transitioning LS, LS, and OG.  
 
Late-successional (LS class) forest was the primary age/structure class of interest 
in this study because of its high density of late-successional attributes, its relative 
intactness, and the fact that it is not yet exceedingly rare like true old-growth. LS 
stands in our classification do not have quite the density of late-successional 
features as does true old-growth, but they are still ecologically exceptional and 
disappearing. Our model did a very good job of finding LS class stands in the 
landscape. 
 
Transitioning LS hectares exhibited a wider range of late-successional 
characteristics on the ground. Transitioning LS stands have the best chance of 
becoming LS forest in the next 25-50 years, or even recovering to a true old-growth 
condition in perhaps a century. Although less valuable in terms of the density of late-
successional features, we recommend screening Transitioning LS stands to assess 
ecological value before harvesting them, especially given the rate of loss of LS 
stands. 
 
The random forest model was not good at distinguishing true OG from the other 
two LSOG classes. This was partly because of the relatively few true OG training 
hectares on which we built the model. We plan to improve the classification 
algorithm for predicting OG with more training hectares, and a few new LiDAR-
derived variables (see Future Research below). 
 
Sometimes our model would classify 100-year-old aspen stands as LS. We found 
this to be true especially in Baxter Park. Bigtooth aspen, quaking aspen, and balsam 
poplar (all species in the genus Populus) colonize heavily disturbed areas, such as 
burned sites. Large areas of Baxter Park burned in the early 1900s. The aspen today 
are about 100 years old, and very tall. These old, burned stands are starting to “fall 
apart,” because the aspen have reached their natural life-span and are dying and 
falling over. Because of this, these old aspen stands have a lot of late-successional 
characteristics, including large living trees, large snags, and large logs. Aspen is 
even a common host for LS-indicator epiphytes (mosses and lichens).84,85 These 
100-year-old aspen stands make up a small percentage of the study area, but we 
are comfortable that they modeled as one of the three LSOG classes because of 
their relatively high density of late-successional characteristics. The University of 

W
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Maine is working on a species composition map of Maine that will soon allow us to 
distinguish between LS-aspen and LS-beech-birch-maple forest.86  
 
While the random forest classification model using LiDAR-derived canopy metrics 
was surprisingly accurate, it is important to understand that it is not perfect. We 
found “false positives” (e.g., the model classified the hectare as LS but it was 
Transitioning LS). The model also had “false negatives,” (it missed identifying a 
hectare as true LS (e.g., it classified a true LS hectare as Not LSOG).  
 
However, LiDAR is a tool to screen vast areas of forest for late-successional 
characteristics. Ground-based surveys of an area as large as that investigated in 
this study would be prohibitively expensive. Although we are most confident in the 
LS class map, it is important to visit predicted LS class stands on the ground before 
making management decisions. The benefit of our model is that it shows a forester 
or conservationist where to look for likely LS stands. Depending on landowner goals 
and a field visit, management decisions can then be made for any given stand. 
 
Our model was not built to identify stunted late-successional forest, such as cedar 
swamps or old high-elevation forest. In this study we were focused on the majority 
of the study area that is most at risk to harvesting. In “Future Research” below, we 
talk about how we could train the classification algorithm to find these forest types 
as well. 
 
We encourage conservationists and researchers to “kick the tires” on the model 
output in the field. Upon request, we will provide readers with GEOTIFF model 
output. Display it in your GIS system and compare the modeled LS class map to 
late-successional stands you know from your own field work. The best evaluation is 
done in the woods; we welcome feedback from anyone who compares our maps to 
their own field knowledge. With your help, we can build an even more accurate 
model. 
 
How much LS class forest exists, and where? 
 
Altogether, for the 4.2-million-hectare study area, we estimated that about 20% was 
in one of the three LSOG classes (Transitioning LS, LS, and OG-like). Below, we 
focus primarily on the LS class because it was most accurately identified with 
LiDAR and because it is an uncommon and increasingly rare forest age class. 
 
Only about 3.0% of the study area was in the LS class. The percentage of LS forest 
varied across the unorganized territories and by ownership types (e.g., public vs. 
private). Of the ~3.0% (125,031 hectares; 308,827 acres) of the study area that was 
in the LS class, 60,148 hectares (148,565 acres) were on private commercial 
timberland and 20,484 hectares (50,595 acres) were on Bureau of Parks and Lands 
ownership or in Baxter Park. So although BPL lands had a much higher proportion of 
LS class forest (8.7%), private commercial timberland had more total hectares of LS 
class forest because commercial forest makes up so much of the study area. This 
indicates that there is a big opportunity to conserve LS forest on private commercial 
timberlands. 
 
There was more LS forest in the northern section of the unorganized territories than 
in the western or eastern sections. This may reflect the northern section’s greater 
distance from mills and population centers. 
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Rate of LS loss 
 
Our model predicted 125,581 hectares (310,185 acres) of LS class forest in the 
study area as of 2023, with an annual rate of loss of 1.40% per year. At this rate, half 
of the remaining LS forest would be lost in the next 35 years. This rate of loss is 
concerning from a conservation perspective because of the ecological importance 
of late-successional forest. The rate of loss was 3.6 times as fast on private 
commercial timberlands as on public lands. 
 
At recent rates of LS harvest, we can expect to lose half of the remaining LS forest 
on commercial timberlands in the next 21 years and on BPL lands in the next 96 
years. The half-life statistic is a good “ruler” for showing relative rates of LS loss, but 
there will always be some pockets of LS forest that are inaccessible to harvesting 
equipment, or ribbons of late-successional trees in riparian buffers that are 
regulated. There are also some 266,642 hectares (658,607 acres) in the study area 
classified as “GAP 1” and “GAP 2,” meaning they are off limits to future harvesting, 
such as public and private ecological reserves.87 Although most of the area in GAP 1 
and GAP 2 parcels are Not LSOG today, presumably they will be someday. Our 
report, and the new LiDAR-derived maps, should assist in a social conversation 
about how much LSOG forest “we” want, when we want it, and how we want it 
distributed. 
 
Hopefully, public lands will continue to be a reservoir of LSOG forest. BPL harvests 
are usually lighter than those by private commercial landowners and BPL has an 
explicit goal of retaining important ecological values. BPL is more likely to partially 
cut LS class stands, dropping them to the Transitioning LS class, which often still 
has significant late-successional attributes. However, it is not clear that BPL is 
generating new LS stands, other than in its Ecological Reserves, which are off limits 
to harvesting. Once the partial-cut harvest regime is initiated, the plan is generally to 
partially harvest those stands again in 20-30 years, which would hold them 
indefinitely in the Transitioning LS class. To the extent LS class forest is a public 
value, we would caution against harvesting the increasingly rare LS class. At a 
minimum, BPL can use our LS maps to ground-truth LS stands that might then be 
conserved permanently. These LS stands have the best chance of returning to an 
old-growth condition in the next 50 years. Having said this, it is important to 
recognize BPL depends on timber sales for its annual budget, and its routine lighter 
harvesting approach is very good at retaining late-successional structure and 
composition in comparison to most private commercial timberlands. 
 
Some private commercial landowners will apply BPL-type partial harvests to LS 
stands, if that is a viable economic treatment for the stand. LS stands on 
commercial timberlands are often a near-term target for harvesting because (1) 
there is a large volume of wood per hectare in LS stands, (2) large trees make for a 
more efficient harvest operation for the logger88, and (3) commercial forest owners 
seek to convert these stands to a shorter and more financially lucrative harvest 
rotation. Sawmill technology has adapted to the generally smaller size of trees in the 
commercial forest today, so large trees are sometimes not as desirable—good news 
for large-tree conservation. Leaving stands in an LS condition, however, is an 
opportunity cost, unless a market for LS conservation develops (see “Strategies” 
discussion below).  
 
On private commercial lands, we often found new logging roads to LS class stands, 
indicating impending harvest; or, they were just recently harvested. Figs. 13 and 14 
show two examples of harvests of LS stands since the LiDAR was flown (2015-

   

Although public 
lands have a 
relatively high 
percentage of LS 
class forest, most 
of the remaining 
LS forest occurs 
on private 
commercial 
timberlands.  
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2018). Usually, LS stands on private commercial timberland are converted to 
shorter-rotation stands through a 1- or 2-stage shelterwood harvest, resulting in a 
completely regenerated (i.e., young) stand (becoming ‘Not LSOG’ in our 
classification scheme). Or, LS stands are converted to a plantation in a single 
clearcut harvest. With regularly updated NAIP imagery and annual Global Forest 
Watch data, we will be able to monitor future loss of LS stands initially detected with 
this LiDAR-based LSOG mapping project. 
 
Some LS stands are operationally difficult to get to. They may be, for example, 
above an abrupt slope that impedes access by harvesting equipment, on rocky post-
glacial debris, or isolated by streams or wetlands. Stands that were inaccessible 50 
years ago are more accessible with modern harvesting equipment and a more well-
developed logging road network. 
 
Some “ribbons” of LS forest will likely remain as long as landowners leave forested 
buffers along streams. However, these buffer strips can be partially harvested every 
10 years. There is no guarantee stream buffers will continue to contain or generate 
late-successional characteristics over the long term. We have an ongoing study 
evaluating the late-successional value of riparian buffers. We often see ribbons of 
“blue-magenta” (likely LS in our canopy height symbology, e.g. Fig. 13) in the LiDAR 
signature along streams, but they are too narrow to be detected by our hectare-
resolution model. Riparian buffers not only help keep water clean and cool, but they 
also contribute to late-successional structure and function across the larger 
landscape.89,90,91 Nevertheless, in our view, given the increasing rarity of LS stands, 
retention of riparian buffers should not be in lieu of conserving other remaining LS 
stands. 
 
We had no way in this study to estimate the amount and rate of forest growing into 
an LS condition. We will, if LiDAR is flown again or if we can use NAIP imagery for 
generating a canopy height model in the future. However, keep in mind that stands 
move into an LS condition slowly, over decades, whereas they come out of an LS 
class instantaneously when harvested, even if lightly harvested. Except for the 
portions of the study area off limits to harvesting (e.g., public and private ecological 
reserves [~71,000 hectares, 175,000 acres],92 Baxter State Park [73,248 hectares, 
180,925 acres, excluding the Scientific Forest Management Area], and Katahdin 
Woods and Waters National Monument [35,851 hectares, 88,554 acres]). It is 
unlikely that new LS forest is being generated in significant amounts relative to what 
is being lost in the 4.2-million-hectare study area. 
 
Conservation Implications: How much LS class forest do we want, and how 
should it be distributed? 
 
At least for now, this is a social question, not a scientific one.93,94 Are we satisfied 
with LS forest ultimately remaining only on our public lands (e.g., BPL, Baxter State 
Park, Katahdin Woods and Waters Monument) and private conservation lands (e.g., 
TNC, AMC, Northeast Wilderness Trust)? Do we write off LS forest on most of the 
unorganized townships?  
 
In our view, restricting LS forest conservation to only public lands and private 
conservation NGO lands would be a risky venture from a species conservation 
perspective. LS is an age/structure class of forest that represents only 3% of the 
study area today—a forest type that once made up 70% or more of the study area.28 
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The challenge is that most of the remaining LS forest in our study region is on 
private commercial timberlands. As shown by our analyses, LS forest is also being 
cut at a relatively high rate on private commercial timberlands. Once LS stands are 
lost, they are lost for a very long time—150 years at a minimum, but more likely 
hundreds of years. It would take a very long time to “rebuild” a late-successional 
stand with large trees, large dead trees, and large logs on the forest floor. And even 

  
 

(a) canopy height 
model  (based on 
2018 LiDAR data) 
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 “OG-like” 

 

 
 

(b) Random forest 
classification of the 
forest in (a) above. 
Blue represents LS 
forest, green 
represents 
Transitioning LS, 
and magenta 
indicates “old-
growth-like” forest. 

 

 

 
 

(c) NAIP aerial 
imagery, 2023; 
grayish areas are 
new white spruce 
plantations. 

 
 
 
 

 
 

(d) Random forest 
model from (b) after 
deleting harvested 
areas 

Figure 13 – An example of LS class stands being harvested since the LiDAR was flown for this scene in 2018. (a) note 
the blue-magenta canopy height “signature” suggesting LS forest. (b) the classification of the forest based 
on LiDAR in (a). (c) NAIP aerial imagery from 2023 showing clearcuts in the blue LS stands. (d) the 
modeled landscape after harvested areas are removed. Most of the LS stands were converted to white 
spruce plantations. The grid scale in each scene is 1x1 km. 
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then, species that prefer older forest would have to find their way to it. Why not 
conserve what still exists today? This would be more cost effective and produce a 
better conservation outcome. 
 
Unfortunately, we have no existing institutional mechanisms tailored to conserving 
LS forest on private timberlands. Most conservation easements are buying 
development rights, not timber rights, and historically have said little or nothing 
about retaining LS forest. This is changing as the conservation easement strategy 
has matured over time. Often easements require landowners to be sustainably 
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2016 LiDAR data) 
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(b) Random forest 
classification of the 
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(c) NAIP aerial 
imagery, 2023; light 
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 Figure 14 – Another example an LS class stand that has been harvested since the LiDAR was 
flown (in 2016 for this scene). The grid scale in each scene is 1 hectare. 
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certified, but neither of the two main certification systems, SFI95 and FSC96, require 
protecting these remaining LS forest stands. We hope this report will help change 
that, because now we know how much there is and where it is. 
 
Often, we have heard from our conservation colleagues that these LS stands are too 
small to be ecologically significant. Conventional wisdom in the conservation 
community is that bigger is always better. Empirical support for this theoretical 
dogma is lacking and inconsistent.97 In addition, at present there are literally 
thousands of LS class stands, some small, some large, somewhat well distributed 
across the study area. These stands, if conserved, can function as refugia for many 
species that are sensitive to forest age and/or structure. If conserved, they have the 
potential to act as population sources for the surrounding landscape someday. If 
conserved, they can keep species well distributed across the entire study 
area.98,99,100,101,102,103,104 If ignored, we will likely lose certain species over vast areas 
of the landscape over the next century. 
 
In our view, we can do both— conserve large landscapes, even if cut-over, because 
they can regrow if allowed to, and conserve the LS ecological “gemstones” that still 
exist widely across the working forest landscape today. It would be a conservation 
mistake to ignore or dismiss the ecological importance of small stands or patches 
of LS forest for maintaining healthy biodiversity across the study area. To the 
question “what is the smallest size of a late-successional stand that has 
conservation value?”, eminent conservation biologist and Mainer Mac Hunter says 
“A single tree!”.105 
 
LSOG conservation strategies 
 
In 2004, Hagan and Whitman106 laid out multiple strategies for conserving LSOG 
forest. These strategies are as relevant today as they were in 2004. At the time, 
some landowners voluntarily elected to screen stands before harvest with a simple 
LSOG field survey.107 A lot of LS forest has been lost since 2004, but we have a 
second chance. We hope our new method for mapping LSOG will encourage the 
conservation strategies below. 
 

 

Acquire more conservation land: A bright spot for LSOG conservation 
has been private conservation organization purchases of timberland 
in the last 20 years. For example, The Nature Conservancy of Maine 
now owns some 65,590 hectares (162,000 acres) in the St. John 
watershed that was formerly private commercial timberland. The 
Appalachian Mountain Club owns about 52,000 hectares (128,000 
acres) of former commercial forestland east of Moosehead Lake. 
These two conservation organizations still harvest timber, but 
conservation is a prime directive. AMC, for example, set aside a large 
portion of its ownership as an ecological reserve that contains an 
exceptional LS stand, which we used as “training data” for building 
our LSOG model. One of AMC’s goals is to restore the landscape to a 
late-successional condition.108 This is a very different forest 
trajectory than under the previous private commercial landowner. 
 
Over the past 40 years there have also been significant public 
forestland acquisitions.87 For example, since inception in 1987, the 
Land for Maine’s Future program has helped conserve 255,000 
hectares (630,000 acres) as in-fee purchases or easements.109 The 
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point is, we have well established instruments for land conservation 
that can be employed to target LSOG conservation. 
 
We are sensitive to the fact that adding more conservation land off-
limits to harvesting could constrain the forest products economy. To 
avoid an impact on wood supply, we would cut different wood, not 
necessarily less wood. In seeking biodiversity gains through 
acquisitions, conservationists need to consider socioeconomic 
impacts. LSOG conservation does not have to be at the expense of 
people’s livelihoods. 
 

 

“Precision” conservation easements: Given that we now know where 
LS stands are, we could adapt the conservation easement 
mechanism that has been used and perfected to conserve working 
forest in Maine over the last 25 years. In the case of LS conservation, 
however, payments could go to landowners to forgo harvesting in LS 
stands, either for a period of time (a “term” easement) or in-
perpetuity. The appraisal value would be derived from the current 
stumpage value of the standing timber in the LS stands.  
 
Monitoring would be relatively simple. Regularly flown NAIP imagery 
would readily show any harvesting that takes place in the LS stand. 
Most harvesting is also detected by the Global Forest Watch 
program. Eased LS stands would be entered into landowner and land 
trust GIS systems, easily tracked, and designated as off-limits to 
harvesting. Conservation at the stand scale might seem painstaking, 
but it is not with a GIS system, which all commercial landowners 
have. Perhaps LS easement holders would do a field visit to eased LS 
stands every 5 years, but otherwise monitor with annual Global 
Forest Watch data and NAIP imagery, both of which are publicly 
available. A conservation “market” for LS stands would also give 
landowners pause before cutting them. The Forest Society of Maine 
has been exploring this type of “precision” easement. 
 
At a minimum, prospective conservation easements can now be 
screened for LSOG forest. With this knowledge, easement 
negotiations can more confidently take into account LSOG forest 
values and goals. 
 

 

Strengthen forest certification standards: In our view, forest 
certification programs should not allow harvesting of LS stands, 
which make up only 3% of the landscape, and more like 1-2% on 
most private commercial timberlands. The standards for both SFI 
and FSC are revised on a regular basis (~ every 5 years) and 
incorporate public input. So far, public input to the SFI and FSC 
standards has not insisted on the conservation of LS stands. FSC 
has a “Type 2” old-growth category in its standard that seems to 
align with our LS stand definition.96 However, FSC does not say how 
much Type 2 forest should be retained. The SFI standard has 
language about “forests with exceptional conservation values.”95 As 
ecologists, we would call LS stands in the unorganized townships of 
Maine “forest of exceptional conservation value.” 
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LSOG Forest Carbon Offsets: We are not proponents of forest carbon 
offset projects that are weak on the “additionality” and “leakage” 
issues, meaning someone’s carbon emission is not really offset.110,111 
For example, if we paid landowners for the standing carbon in an LS 
stand, we might save that carbon in that stand, but the landowner 
would likely cut the equivalent amount of wood elsewhere, or some 
other entity would (termed “market leakage”). We would have 
achieved an LS conservation goal, but not the carbon goal, which is 
the whole point of carbon offsets. 
 
However, what if landowners are paid for carbon in the LS stand and 
are required to use the proceeds to invest in silviculture that 
accelerates growth of other areas of their ownership? Then, new 
carbon would be stored that would not have otherwise been stored. 
This addresses both the additionality and leakage issues. This would 
generate new “real” carbon storage AND achieve an ecological 
conservation goal at the same time. Several conservation groups are 
exploring this potential instrument, including the New England 
Forestry Foundation’s Climate Smart Commodities program.112 
 

 

Incentives: Maine already has a Tree Growth Tax law that gives 
forest landowners a tax break for lands with a forest management 
plan.113 Landowners could be given an additional tax break for acres 
that are maintained as LS forest. (We acknowledge there is strong 
political opposition to any change in the Maine Tree Growth Tax law, 
even if it financially benefited landowners.)  
 
Alternatively, a federal or state incentive fund could be established to 
pay landowners for not cutting certain acres. Such a fund might 
require 10-year commitments not to harvest, and pay a higher 
amount per acre for in-perpetuity commitments not to harvest. This 
type of program already exists at the federal level—the Conservation 
Reserve Program (CRP). Within this program is a Forest 
Management Incentive (FMI) option.114 Conserving or creating 
“upland wildlife habitat” is one of the sanctioned practices of the FMI 
program. It seems that conservation of LS forest would be aligned. 
The program explicitly pays landowners for creation of early-
successional habitat but not for conserving late-successional 
habitat. Payments for FMI are limited to $200,000/landowner, and 
designed for small woodlot owners. But given President Biden’s 2022 
Executive Order to inventory the nation’s mature and old-growth 
forests, it might be a good idea to modify CRP/FMI funds to support 
conservation of LS stands on larger commercial forest ownerships 
where there is an opportunity to scale up conservation impact. 
 

 

Stand management to retain and promote old structure: While the 
previous strategies focus on the conservation of existing late-
successional forests, a complementary strategy is to encourage the 
retention of, and future development of, late-successional forest 
attributes through forestry. With careful attention to existing late-
successional features, foresters and loggers could harvest wood 
while retaining the maximum possible number of large trees, snags, 
and logs, and even accelerate the development of these same 
features through silviculture.115,116,117 The general goal is to simulate 
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the processes of tree mortality, gap creation, and heterogeneity of 
old forests by using precise and limited harvesting, girdling, and 
retention of legacy trees.118  
 

We hope readers of this report will adopt or adapt one or more of these strategies, 
or come up with other ideas for LSOG conservation not mentioned here. We stand 
ready to help landowners and the land conservation community conserve LSOG 
forest in Maine. 
 
Future Research 
 
Finding small patches and riparian “ribbons” of LSOG forest 
 
The hectare-scale classification of our study area is useful for stand-level 
management and conservation, but it misses small LSOG patches (less than a 
hectare) and “ribbons” of LSOG forest along narrow riparian buffers. Most riparian 
buffers are 75’ (23 m) on either side of the stream bank. Such buffers are too small 
for our modeling approach to detect. However, we have tested a finer scale model 
at 0.25-hectare resolution on a few townships. This more fine-grained model did 
pick up more LSOG forest in riparian buffer strips, but the amounts gained were 
small in proportion to LSOG stands in most townships. However, this preliminary 
result should not diminish the potential importance of riparian buffers for LSOG 
value. In fact, because of the long, linear nature of riparian buffers, they could play a 
disproportionately important role (relative to their area) in keeping LSOG 
characteristics well-distributed across the study area.119 Our ongoing research is 
addressing this question. 
 
Finding true old-growth 
 
We are only scratching the surface of the capacity of LiDAR data to tell us about 
ecological attributes of the forest that previously could only be obtained by field 
visits. In some cases, LiDAR can even tell us more about forest structure than do on-
site visits. For example, it is very difficult to quantify canopy structure in the field, or 
to generate canopy height profiles with such thoroughness and precision as shown 
in Fig. 12. 
 
Although our selected LiDAR metrics did a poorer job of distinguishing LS forest 
from true OG, we believe we can build a model that can differentiate between the 
two. This matters because we found a 283-hecare (700-acre) tract of “blue-
magenta” true old-growth during this study that the conservation community did not 
seem to know about. If we can build a computer model to find true old-growth, we 
might find more, yet unknown, true old-growth stands. Four million hectares is a lot 
of area to screen for old-growth forest. That we found the 283-hectare tract 
mentioned above justifies this exploratory research. There may be more true old-
growth than we think. 
 
Two data sources give us optimism for finding true OG using publicly available 
LiDAR. In our modeling to date, we used only the canopy surface model generated 
from LiDAR. The canopy surface model uses only about 10% of the LiDAR data. If 
we used the full LiDAR 3-D point cloud, we may be better able to distinguish OG 
from LS. Consider Fig. 15, a 10x100m slice of 3-D LiDAR data from an exceptional 
LS stand on BPL land in Deboullie Township, and a 10x100m slice of LiDAR data 
from Big Reed, true OG. The cross sections look quite different, even though both 
forests are of extraordinary conservation value. If we use the full 3-D point cloud, we 
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can likely extract LiDAR metrics that will distinguish between these two cross 
sections. It will require a more powerful computer, or more computer time, to 
process the full 3-D point cloud for this purpose. 
 
In addition to the full 3-D cross section described above, we have explored whether 
we can “see” large, downed logs in the full 3-D LiDAR data. Large, downed logs are 
probably the single most obvious indicator of true old-growth forest, based on our 
extensive field work in both LS and OG stands, and the work of others.120,121 Fig. 16 
shows only LiDAR points between 0.2 and 2.0 m above the ground surface. Curious 
linear features are clearly revealed. In a follow-up field visit to this specific hectare in 
Big Reed Reserve, we verified that the linear features in the LiDAR image are indeed 
large downed logs. LiDAR even depicts the orientation and length of the downed log 
accurately. Our field visit indicated that the publicly available LiDAR we used could 
only reliably detect large downed logs (~40+ cm in diameter). But that is good 
enough for our purposes; it is the density of large downed logs that indicate true old 
growth. Anecdotal comparison of LiDAR scenes from LS forest showed a much 
lower density of large logs. Thus, adding the density of large downed logs as 
detected with LiDAR to our existing 8 canopy metrics could significantly improve 
LiDAR’s ability to distinguish LS from true OG stands. We are working to build a 
model that includes these 3-D structural elements. 
 
Finding old-growth forested wetlands 
 
As stated earlier, our model was not designed to identify stunted old black spruce 
wetlands and cedar swamps, or high-elevation old spruce. However, there is no 
reason our same modeling approach cannot be used to locate and map these forest 
types as well. The key to success is having known “training” hectares of whatever 
forest type is of interest. We can then train the computer to find more hectares that 
have the same LiDAR signature, especially when combined with hydrology maps. 
We hope to use this approach to find old cedar forests in the near future, using 
known training hectares provided by foresters and ecologists. We encourage other 

 

 
 
(a) Deboullie: 
     Late-successional forest 

 

 
 
(b) Big Reed: 
     old-growth forest 

 
Figure 15 – Cross section of 100 m of LiDAR data from (a) a late-successional stand (~150 years 

old), and (b) a true old-growth stand (250+ years old). Both stands are of exceptional 
ecological value. But note the structural difference between the true old-growth and the 
late-successional stand. In the old-growth stand, natural tree-falls due to old age create 
an uneven forest canopy. Late-successional stands have not yet acquired the ecological 
dynamics of true old-growth. We will explore whether we can use this distinctive LiDAR 
“signature” to find currently unknown old-growth stands in Maine. 

 



                                                  PAGE 37 

researchers to explore uses of LiDAR for all kinds of ecological topics. Using LiDAR 
to answer ecological and conservation questions is a pioneering area of research. 
 
Tracking stands entering the LS class 
 
Because LiDAR for the study area was flown for only one “point” in time (mostly 
2015-2018), we have no way of tracking hectares that grow into the Transitioning LS 
and LS classes. However, the Wheatland Geospatial Lab at the University of Maine 
has developed a method of generating a 1 m2 resolution canopy height model from 
NAIP imagery (National Agriculture Imagery Program).122 NAIP imagery is publicly 
available and flown every two or three years. This means that, going forward, we 
might be able to use NAIP imagery to identify hectares that were not in an LSOG 
condition on the previous NAIP flight, but now are. This would be particularly 
interesting to know for public lands (e,g., BPL, Baxter Park) and for private 
conservation lands (e.g., TNC and AMC). NAIP data provide only a canopy surface 
model, not the 3-D data of LiDAR. But it appears from our work that the canopy 
surface model is sufficient for accurately locating LSOG stands. We will still explore 
the potential to locate true old-growth with the 3-D LiDAR data. 
 
Screening the Organized Townships 
 
We focused this project on the unorganized townships of Maine, in part because 
that is the area we, as researchers, have the most experience. However, LiDAR could 
be used in the same way to screen the organized towns of Maine for LSOG. 
Preliminary reconnaissance in the mid-coast Camden area suggests the approach 
will work for the organized towns. In organized towns, sometimes former 
agricultural lands can have very tall second-growth white pine that might “fool” our 
computer model. But those second growth stands also have a unique LiDAR 

 
 

Figure 16 – LiDAR 3-D points between 0m and 2m above ground from a hectare in 
Big Reed, a true old-growth site. The red grid is 10x10m. The red circle 
identifies one of many downed logs in the scene. Linear features 
represented in the LiDAR are large, downed logs. In the lower section of 
the scene, there is a tangled blowdown of trees. All downed logs were 
verified with a field visit in 2023. The density of large logs, as revealed 
with LiDAR, may be an additional signature of old-growth forest. 
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signature that the computer can likely discern. It is simply a matter of training the 
computer on known sites (for either inclusion or exclusion). We hope land trusts will 
consider using LiDAR if they are interested in conserving LSOG forest. We would be 
happy to assist them. 
 
The importance of a healthy forest products economy to conservation 
 
The authors of this report are supporters of a thriving forest products economy. We 
do not advocate for conservation of LSOG forest at the expense of the forest 
products economy, and especially rural community jobs. Indeed, we believe that the 
many ecological attributes we enjoy today are the result of the long history of 
Maine’s working forest. The good news for national-scale bird conservation that we 
recently reported is a good example of why keeping Maine’s forest products 
economy healthy is important for our environmental values.32 In the last few 
decades, Maine’s forest products economy has been increasingly vulnerable to 
global competition. However, we believe in producing forest products in a part of the 
world—Maine—where we can attend to both our economic and environmental 
values responsibly. That is why we hope landowners and conservation 
organizations alike will work with us, and each other, to maintain a healthy forest 
economy while conserving remaining LSOG forest. We envision an opportunity to 
combine LSOG conservation with increased investment in silviculture, making the 
forest even more economically productive. 
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